Fractional diffusion in periodic potentials

نویسندگان

  • E Heinsalu
  • M Patriarca
  • P Hänggi
چکیده

Fractional, anomalous diffusion in space-periodic potentials is investigated. The analytical solution for the effective fractional diffusion coefficient in an arbitrary periodic potential is obtained in closed form in terms of two quadratures. This theoretical result is corroborated by numerical simulations for different shapes of the periodic potential. Normal and fractional spreading processes are contrasted via the time evolution of the corresponding probability densities in state space. While there are distinct differences occurring at small evolution times, a re-scaling of time yields a mutual matching between the long-time behaviours of normal and fractional diffusion. (Some figures in this article are in colour only in the electronic version)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 6 Fractional diffusion in periodic potentials

Fractional, anomalous diffusion in space-periodic potentials is investigated. The analytical solution for the effective, fractional diffusion coefficient in an arbitrary periodic potential is obtained in closed form in terms of two quadratures. This theoretical result is corroborated by numerical simulations for different shapes of the periodic potential. Normal and fractional spreading process...

متن کامل

Current and universal scaling in anomalous transport.

Anomalous transport in tilted periodic potentials is investigated within the framework of the fractional Fokker-Planck dynamics and the underlying continuous time random walk. The analytical solution for the stationary, anomalous current is obtained in closed form. We derive a universal scaling law for anomalous diffusion occurring in tilted periodic potentials. This scaling relation is corrobo...

متن کامل

Fractional Fokker-Planck dynamics: Numerical algorithm and simulations.

Anomalous transport in a tilted periodic potential is investigated numerically within the framework of the fractional Fokker-Planck dynamics via the underlying continuous-time random walk. An efficient numerical algorithm is developed which is applicable for an arbitrary potential. This algorithm is then applied to investigate the fractional current and the corresponding nonlinear mobility in d...

متن کامل

Vibration of FG viscoelastic nanobeams due to a periodic heat flux via fractional derivative model

In this work, the vibrations of viscoelastic functionally graded Euler–Bernoulli nanostructure beams are investigated using the fractional-order calculus. It is assumed that the functionally graded nanobeam (FGN) is due to a periodic heat flux. FGN can be considered as nonhomogenous composite structures; with continuous structural changes along the thick- ness of the nanobeam usually, it change...

متن کامل

The Periodic Patch Model for Population Dynamics with Fractional Diffusion

Fractional diffusions arise in the study of models from population dynamics. In this paper, we derive a class of integro-differential reactiondiffusion equations from simple principles. We then prove an approximation result for the first eigenvalue of linear integro-differential operators of the fractional diffusion type, and we study from that the dynamics of a population in a fragmented envir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007